988 research outputs found

    Surrogate Test to Distinguish between Chaotic and Pseudoperiodic Time Series

    Get PDF
    In this communication a new algorithm is proposed to produce surrogates for pseudoperiodic time series. By imposing a few constraints on the noise components of pseudoperiodic data sets, we devise an effective method to generate surrogates. Unlike other algorithms, this method properly copes with pseudoperiodic orbits contaminated with linear colored observational noise. We will demonstrate the ability of this algorithm to distinguish chaotic orbits from pseudoperiodic orbits through simulation data sets from theR\"{o}ssler system. As an example of application of this algorithm, we will also employ it to investigate a human electrocardiogram (ECG) record.Comment: Accepted version, to appear in Phys. Rev.

    Scaled unscented transform Gaussian sum filter: theory and application

    Full text link
    In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf ... This work is on the construction of the Gaussian sum filter based on the scaled unscented transform

    Recursive Bayesian Filters for Data Assimilation

    Full text link
    A thesis on some recursive Bayesian filters for data assimilatio
    corecore